7^2x-5=1/343

Simple and best practice solution for 7^2x-5=1/343 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7^2x-5=1/343 equation:



7^2x-5=1/343
We move all terms to the left:
7^2x-5-(1/343)=0
We add all the numbers together, and all the variables
7^2x-5-(+1/343)=0
We get rid of parentheses
7^2x-5-1/343=0
We multiply all the terms by the denominator
7^2x*343-1-5*343=0
We add all the numbers together, and all the variables
7^2x*343-1716=0
Wy multiply elements
2401x^2-1716=0
a = 2401; b = 0; c = -1716;
Δ = b2-4ac
Δ = 02-4·2401·(-1716)
Δ = 16480464
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{16480464}=\sqrt{38416*429}=\sqrt{38416}*\sqrt{429}=196\sqrt{429}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-196\sqrt{429}}{2*2401}=\frac{0-196\sqrt{429}}{4802} =-\frac{196\sqrt{429}}{4802} =-\frac{2\sqrt{429}}{49} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+196\sqrt{429}}{2*2401}=\frac{0+196\sqrt{429}}{4802} =\frac{196\sqrt{429}}{4802} =\frac{2\sqrt{429}}{49} $

See similar equations:

| x-3/2-1/3=x/4-x+4/5 | | 5(x-3)-4(2-2x)=3(2x-7)+8x | | 6x-2x+25=65 | | 3+2q=10 | | (x-6)/3=9/x | | 5(x–3)-4(2–2x)=3(2x-7)+8x | | –7+3+3x=-5+2x | | -6+6x=3+3x | | 0,12xX=6 | | 5y=36= | | 15x+12x=15 | | 30−2x=4x | | 31−5x+2x=x+47+12x−16 | | 5x+85−7x=100−45−x | | (x-4)/(-2)-(4x+5)/(2x+3)=0 | | 4/3x-7=3 | | 47=8x+8 | | 3x=−2 | | 21=5t+6 | |  2x^2-6x+10=0 | | (x/2-x)=2 | | x²-3x+15=0 | | 6x=15+~9x | | 2x2+12x-10=0 | | 1=27b-23 | | 34=2x= | | 2x2+12-10=0 | | n/20=60/80 | | 1=(3b*3b*3b)+22-45 | | w2/4=49 | | 3b*3b*3b=24 | | 90-x×10+5x=500 |

Equations solver categories